Multi-Stream End-to-End Speech Recognition
نویسندگان
چکیده
منابع مشابه
Multi-Stream Front-End Processing for Robust Distributed Speech Recognition
This paper investigates a multi-stream-based front-end in Distributed Speech Recognition (DSR). It aims at improving the performance of Hidden Markov Model (HMM)-based systems by combining features based on conventional MFCCs and formant-like features to constitute a new multivariate feature vector. The approach presented in this paper constitutes an alternative to the DSR-XAFE (XAFE: eXtended ...
متن کاملEnd-to-End Speech Recognition with Auditory Attention for Multi-Microphone Distance Speech Recognition
End-to-End speech recognition is a recently proposed approach that directly transcribes input speech to text using a single model. End-to-End speech recognition methods including Connectionist Temporal Classification and Attention-based Encoder Decoder Networks have been shown to obtain state-ofthe-art performance on a number of tasks and significantly simplify the modeling, training and decodi...
متن کاملEnd-to-end Audiovisual Speech Recognition
Several end-to-end deep learning approaches have been recently presented which extract either audio or visual features from the input images or audio signals and perform speech recognition. However, research on end-to-end audiovisual models is very limited. In this work, we present an end-toend audiovisual model based on residual networks and Bidirectional Gated Recurrent Units (BGRUs). To the ...
متن کاملEnd-to-End Speech Recognition Models
For the past few decades, the bane of Automatic Speech Recognition (ASR) systems have been phonemes and Hidden Markov Models (HMMs). HMMs assume conditional independence between observations, and the reliance on explicit phonetic representations requires expensive handcrafted pronunciation dictionaries. Learning is often via detached proxy problems, and there especially exists a disconnect betw...
متن کاملMultichannel End-to-end Speech Recognition
The field of speech recognition is in the midst of a paradigm shift: end-to-end neural networks are challenging the dominance of hidden Markov models as a core technology. Using an attention mechanism in a recurrent encoder-decoder architecture solves the dynamic time alignment problem, allowing joint end-to-end training of the acoustic and language modeling components. In this paper we extend ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE/ACM Transactions on Audio, Speech, and Language Processing
سال: 2020
ISSN: 2329-9290,2329-9304
DOI: 10.1109/taslp.2019.2959721